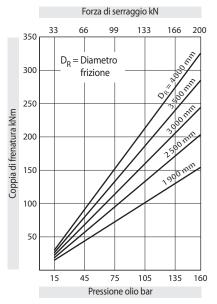
Freno a pinza HW 180 HUK

RINGSPANN®


attivato idraulicamente – senza rilascio freno per "yaw" nelle torri eoliche

Caratteristiche	Codice
Freno a pinza	Н
Standard	W
Con diametro pistone 2 x 90 mm	180
Attivato idraulicamente	Н
Senza rilascio	U
Senza registrazione del consumo elementi d'attrito	К
Forza si serraggio massima 200 kN	200
Esempio d'ordine	
Freno a pinza HW 180 HUK, massima forza di serraggio 200 kN:	

HW 180 HUK - 200

Dati tecnici

La coppia di frenatura indicata nella tabella è calcolata con un coefficiente di attrito teorico di 0,4.

Pressione olio: min. 15 bar

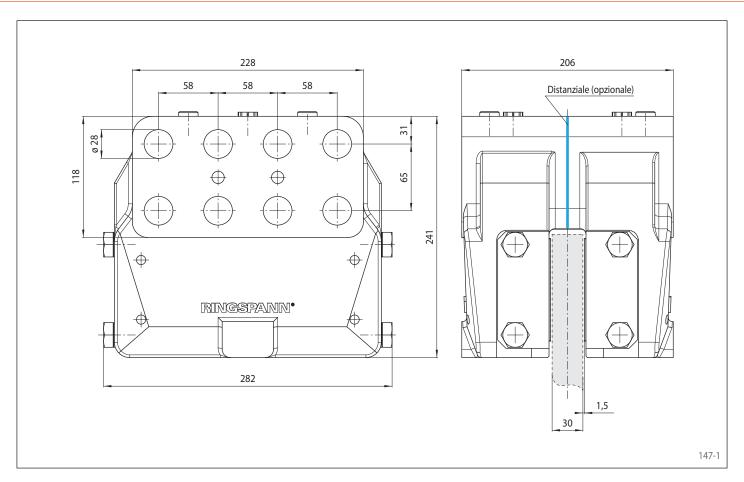
max. 160 bar

Volume olio: max. 190 cm³

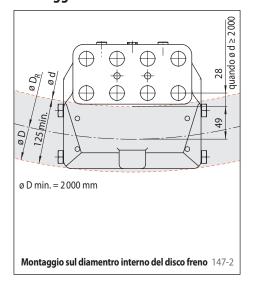
Peso: ca. 65 kg

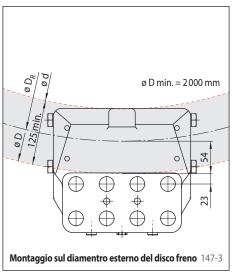
Altre caratteristiche

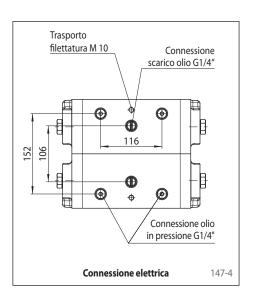
- Sicurezza contro le perdite
- Sostituzione facilitata dei ceppi
- Verniciatura con superficie classe C4-L in accordo alle ISO 12944
- Per spessore disco freno W= 30 mm; spessori disco freno maggiori possono essere raggiunti con un distanziale installato dal cliente


Accessori

 Verniciatura con superficie classe C4-H o C5M-H (offshore) in accordo alle ISO 12944


Freno a pinza HW 180 HUK


RINGSPANN®


attivato idraulicamente – senza rilascio freno per "yaw" nelle torri eoliche

Montaggio

Calcolo del diametro di frizione

Montaggio sul diamentro interno del disco freno:

$$D_R = d + (2 \cdot 49 \text{ mm})$$

(quando $d \ge 2000 \text{ mm}$)

<u>Montaggio sul diamentro esterno del disco</u> freno:

 $D_R = D - (2 \cdot 54 \text{ mm})$

Calcolo della coppia frenante

$$M_B = \frac{D_R}{0.786} \cdot p \cdot \mu$$

Abbreviazione formule

M_B = Coppia frenante [Nm]

D = Diametro esterno disco freno [mm]

d = Diametro interno disco freno [mm]

 $D_R = Diametro frizione [mm]$

p = Pressione olio [bar]

 μ = Coefficiente d'attrito